A possible relationship between the anti-cancer potency of photodynamic therapy using the novel photosensitizer ATX-s10-Na(II) and expression of the vascular endothelial growth factor in vivo.

نویسندگان

  • T Okunaka
  • J Usuda
  • S Ichinose
  • H Hirata
  • K Ohtani
  • S Maehara
  • T Inoue
  • K Imai
  • M Kubota
  • Y Tsunoda
  • Y Kuroiwa
  • H Tsutsui
  • K Furukawa
  • K Nishio
  • H Kato
چکیده

ATX-s10-Na(II) is a novel second-generation photo-sensitizer for photodynamic therapy (PDT). PDT using ATX-s10 and diode laser (670 nm) induces an apoptotic response, inflammatory reaction, immune reaction and damage to the microvasculature. In particular, the vascular shut-down effect plays an important role in the anti-tumor activity of ATX-s10-PDT. It has been reported that PDT induces hypoxia and expression of the vascular endothelial growth factor (VEGF) via the hypoxia-inducible factor 1 (HIF1)-alpha pathway. We hypothesized that the expression of VEGF may cause tumor recurrence after PDT and exert unfavorable effect against the anti-tumor activity of ATX-s10-PDT. In this study, we showed by DNA microarray analysis in vitro that VEGF mRNA expression was induced 3 h after laser irradiation in ATX-s10-PDT. We compared the anti-tumor activity of ATX-s10-PDT against lung cancer cell lines SBC-3 and SBC-3/VEGF, the latter overexpressing VEGF; there was no significant difference in the sensitivity to the PDT between the two cell lines as assessed by clonogenic assay. Furthermore, no statistically significant difference in the anti-tumor effect of PDT, as measured by tumor cures, was found between SBC-3 and SBC-3/VEGF tumors in female Balb/c-nu/nu nude mice in vivo. In conclusion, ATX-s10-PDT may prevent tumor recurrence despite induction of VEGF and promotion of tumor angiogenesis, which are known to enhance tumor proliferation and survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies

Objective(s): Emergence of resistant tumor cells to the current therapeutics is the main hindrance in cancer treatment. Combination therapy, which mixes two or more drugs, is a way to overcome resistant problems of cancer cells to current treatments.  Nanobodies are promising tools in cancer therapy due to their high affinity as well as high penetration to tumor sites....

متن کامل

Determination of Vascular Endothelial- and Fibroblast-Growth Factor Receptors in a Mouse Fibrosarcoma Tumor Model Following Photodynamic Therapy

The role of angiogenic molecules, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in tumor angiogenesis was well confirmed. Photodynamic therapy (PDT) action is, to very high degree, based on tumor vasculature damage. Therefore, it seemed to be important to evaluate growth factor receptors after PDT. The extent of receptor expression was studied by immuno-histo...

متن کامل

In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies

Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...

متن کامل

Lysosomal cathepsin initiates apoptosis, which is regulated by photodamage to Bcl-2 at mitochondria in photodynamic therapy using a novel photosensitizer, ATX-s10 (Na).

ATX-s10 is a novel and second-generation photosensitizer for photodynamic therapy (PDT). In order to conduct clinical trials of ATX-s10-PDT and/or extend its clinical applications, it is very important to elucidate the mechanisms of the action of ATX-s10-PDT. We examined the apoptic response against ATX-s10-PDT using a Bcl-2 or Bcl-2 mutant overexpressing cells. Using fluorescent microscopy, AT...

متن کامل

Accumulation of photosensitizer ATX-S10 (Na) in experimental corneal neovascularization.

PURPOSE To determine the most appropriate time for laser irradiation to produce selective occlusion of new corneal vessels by photodynamic therapy (PDT) with a new photosensitizer, ATX-S10(Na). METHODS The time course of the plasma levels of ATX-S10(Na) and the degree of dye accumulation in the corneal neovascularization after intravenous administration was determined in rabbit eyes. Plasma c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2007